2N5058 2N5059

CASE 79-02, STYLE 1 TO-39 (TO-205AD)

GENERAL PURPOSE TRANSISTOR

NPN SILICON

MAXIMUM RATINGS

WAXIWOW NATINGS				
Rating	Symbol	2N5058	2N5059	Unit
Collector-Emitter Voltage	VCEO	. 300	250	Vdc
Collector-Base Voltage	V _{CBO}	300	250	Vdc
Emitter-Base Voltage	VEBO	7.0	6.0	Vdc
Collector Current — Continuous	l _C	150		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	1.0 6.67		Watt mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	5.0 33.3		Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200		℃ ,

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	30	· °C/W
Thermal Resistance, Junction to Ambient	R _θ JA (1)	150	°C/W

Symbol

Min

Max

Unit

Refer to 2N3724 for graphs.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic

OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (2) (I _C = 30 mAdc, I _B = 0)	2N5058 2N5059	V(BR)CEO	300 250	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc, I_E = 0$)	2N5058 2N5059	V(BR)CBO	300 250	=	Vdc
Emitter-Base Breakdown Voltage (IE = 100 μ Adc, IC = 0)	2N5058 2N5059	V(BR)EBO	7.0 6.0	_	Vdc
Collector Cutoff Current $(V_{CB} = 100 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 100 \text{ Vdc}, I_E = 0, T_A)$	≈ + 125°C)	ICBO	_	0.05 20	μAdc
Emitter Cutoff Current ($V_{BE} = 5.0 \text{ Vdc}, I_{C} = 0$)		I _{EBO}	_	10	nAdc
ON CHARACTERISTICS (2)					
DC Current Gain (I _C = 5.0 mAdc, V _{CE} = 25 Vdc)	2N5058 2N5059	hFE	10 10	_	_
$(I_C = 30 \text{ mAdc}, V_{CE} = 25 \text{ Vdc})$	2N5058 2N5059		35 30	150 150	
(I _C = 30 mAdc, V_{CE} = 25 Vdc, T_A = -55° C)	2N5058		10	_	
(I _C = 100 mAdc, V _{CE} = 25 Vdc)	2N5058 2N5059		35 30	_	
Collector-Emitter Saturation Voltage (IC = 30 mAdc,	l _B = 3.0 mAdc)	V _{CE(sat)}	_	1.0	Vdc
Base-Emitter Saturation Voltage $(I_C = 30 \text{ mAdc}, I_B =$	= 3.0 mAdc)	V _{BE(sat)}	_	0.85	Vdc
Base-Emitter On Voltage ($I_C = 30 \text{ mAdc}$, $V_{CE} = 25 \text{ N}$	/dc)	V _{BE(on)}	_	0.82	Vdc

SMALL-SIGNAL CHARACTERISTICS

SMALE-SIGNAL CHARACTERISTICS				
Current-Gain — Bandwidth Product (3) (I _C = 10 mAdc, V _{CE} = 25 Vdc, f = 20 MHz)	fT	30	160	MHz
Collector-Base Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_E = 0$, $f \approx 1.0 \text{ MHz}$)	C _{cb}	_	10	pF
Emitter-Base Capacitance (V _{BE} = 0.5 Vdc, I _C = 0, f = 1.0 MHz)	C _{eb}	_	75	pF

⁽¹⁾ R0JA is measured with the device soldered into a typical printed circuit board. (2) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

⁽³⁾ fT is defined as the frequency at which the |hfe| extrapolates to unity.